52 research outputs found

    Small Scale AES Toolbox: Algebraic and Propositional Formulas, Circuit-Implementations and Fault Equations

    Get PDF
    Cryptography is one of the key technologies ensuring security in the digital domain. As such, its primitives and implementations have been extensively analyzed both from a theoretical, cryptoanalytical perspective, as well as regarding their capabilities to remain secure in the face of various attacks. One of the most common ciphers, the Advanced Encryption Standard (AES) (thus far) appears to be secure in the absence of an active attacker. To allow for the testing and development of new attacks or countermeasures a small scale version of the AES with a variable number of rounds, number of rows, number of columns and data word size, and a complexity ranging from trivial up to the original AES was developed. In this paper we present a collection of various implementations of the relevant small scale AES versions based on hardware (VHDL and gate-level), algebraic representations (Sage and CoCoA) and their translations into propositional formulas (in CNF). Additionally, we present fault attack equations for each version. Having all these resources available in a single and well structured package allows researchers to combine these different sources of information which might reveal new patterns or solving strategies. Additionally, the fine granularity of difficulty between the different small scale AES versions allows for the assessment of new attacks or the comparison of different attacks

    Bone preserving level of osteotomy in short-stem total hip arthroplasty does not influence stress shielding dimensions – a comparing finite elements analysis

    Get PDF
    Background The main objective of every new development in total hip arthroplasty (THA) is the longest possible survival of the implant. Periprosthetic stress shielding is a scientifically proven phenomenon which leads to inadvertent bone loss. So far, many studies have analysed whether implanting different hip stem prostheses result in significant preservation of bone stock. The aim of this preclinical study was to investigate design- depended differences of the stress shielding effect after implantation of a selection of short-stem THA-prostheses that are currently available. Methods Based on computerised tomography (CT), a finite elements (FE) model was generated and a virtual THA was performed with different stem designs of the implant. Stems were chosen by osteotomy level at the femoral neck (collum, partial collum, trochanter sparing, trochanter harming). Analyses were performed with previously validated FE models to identify changes in the strain energy density (SED). Results In the trochanteric region, only the collum-type stem demonstrated a biomechanical behaviour similar to the native femur. In contrast, no difference in biomechanical behaviour was found between partial collum, trochanter harming and trochanter sparing models. All of the short stem-prostheses showed lower stress-shielding than a standard stem. Conclusion Based on the results of this study, we cannot confirm that the design of current short stem THA-implants leads to a different stress shielding effect with regard to the level of osteotomy. Somehow unexpected, we found a bone stock protection in metadiaphyseal bone by simulating a more distal approach for osteotomy. Further clinical and biomechanical research including long-term results is needed to understand the influence of short- stem THA on bone remodelling and to find the optimal stem-design for a reduction of the stress shielding effect

    Interactions Between Teachers’ Attribution for Student Learning and Implementation of Evidence-Based Practices

    Get PDF
    This study investigated interactions between evidence-based practices implemented and attributions of factors contributing to achievement of student learning objectives. Conducted in three school districts in a mid-Atlantic state, 78 teachers completed an end-of-year survey. Internal attributions were significantly correlated with implementation of evidence-based teaching practices in general and in teaching students with disabilities. External attributions were statistically correlated to implementation of evidence- based practices in both reading and teaching students with disabilities. Perceptions of school support were significantly correlated with implementation of evidence-based teaching practices for teaching both reading and writing

    Shape characterization of polymersome morphologies via light scattering techniques

    Get PDF
    Polymersomes, vesicles self-assembled from amphiphilic block copolymers, are well known for their robustness and for their broad applicability. Generating polymersomes of different shape is a topic of recent attention, specifically in the field of biomedical applications. To obtain information about their exact shape, tomography based on cryo-electron microscopy is usually the most preferred technique. Unfortunately, this technique is rather time consuming and expensive. Here we demonstrate an alternative analytical approach for the characterization of differently shaped polymersomes such as spheres, prolates and discs via the combination of multi-angle light scattering (MALS) and quasi-elastic light scattering (QELS). The use of these coupled techniques allowed for accurate determination of both the radius of gyration (Rg) and the hydrodynamic radius (Rh). This afforded us to determine the shape ratio ρ (Rg/Rh) with which we were able to distinguish between polymersome spheres, discs and rods.</p

    The Resilient Dairy Genome Project - a general overview of methods and objectives related to feed efficiency and methane emissions.

    Get PDF
    The Resilient Dairy Genome Project (RDGP) is an international large-scale applied research project that aims to generate genomic tools to breed more resilient dairy cows. In this context, improving feed efficiency and reducing greenhouse gases from dairy is a high priority. The inclusion of traits related to feed efficiency (e.g., dry matter intake [DMI]) or greenhouse gases (e.g., methane emissions [CH4]) relies on available genotypes as well as high quality phenotypes. Currently, 7 countries, i.e., Australia [AUS], Canada [CAN], Denmark [DNK], Germany [DEU], Spain [ESP], Switzerland [CHE], and United States of America [USA] contribute with genotypes and phenotypes including DMI and CH4. However, combining data is challenging due to differences in recording protocols, measurement technology, genotyping, and animal management across sources. In this study, we provide an overview of how the RDGP partners address these issues to advance international collaboration to generate genomic tools for resilient dairy. Specifically, we describe the current state of the RDGP database, data collection protocols in each country, and the strategies used for managing the shared data. As of February 2022, the database contains 1,289,593 DMI records from 12,687 cows and 17,403 CH4 records from 3,093 cows and continues to grow as countries upload new data over the coming years. No strong genomic differentiation between the populations was identified in this study, which may be beneficial for eventual across-country genomic predictions. Moreover, our results reinforce the need to account for the heterogeneity in the DMI and CH4 phenotypes in genomic analysis

    Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis

    Get PDF
    Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified ten new risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with new secondary signals at four of these loci). Notably, the new loci include candidate genes with roles in the regulation of innate host defenses and T cell function, underscoring the important contribution of (auto)immune mechanisms to atopic dermatitis pathogenesis

    Exploring, exploiting and evolving diversity of aquatic ecosystem models: a community perspective

    Get PDF
    corecore